import numpy as np
import pandas as pd
df = pd.DataFrame({'x': np.arange(0.0, 2.0, 0.01)})
df['y = sin(x)'] = np.sin(2 * np.pi * df['x'])
df = df.set_index('x')
df.plot(grid=True)
<matplotlib.axes._subplots.AxesSubplot at 0x124686950>
Facilitates the following process:
raw_data = load_some_data()
clean_data = clean_up_the_data(raw_data)
satisfied = False
while not satisfied:
sliced_data = slice_the_data(data)
visualize(sliced_data)
if new_ideas_or_intuitions_gained():
update_cleaup_method()
update_how_we_slice_data()
if objective_achieved() or sleepy() or now() > deadline():
satisfied = True
A document that combines:
$ i = a_m * A + \frac{math}{cell} $
# I am an input cell
print(''.join(reversed('.llec tuptuo na ma I')))
I am an output cell.
At a highlevel:
Note: Colab and Jupyter produce .ipynb files that are compatible with each other.